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A recent study reported that a 32-base-pair deletion in the CCR5 gene (CCR5-Δ32) is 

deleterious in the homozygous state in humans. Evidence for this came from a survival 

analysis in the UK Biobank cohort, and from deviations from Hardy–Weinberg equilibrium 

at a polymorphism tagging the deletion (rs62625034). Here, we carry out a joint analysis of 

whole-genome genotyping data and whole-exome sequencing data from the UK Biobank, 

which reveals that technical artifacts are a more plausible cause for deviations from Hardy–

Weinberg equilibrium at this polymorphism. Specifically, we find that individuals 

homozygous for the deletion in the sequencing data are under-represented in the genotyping 

data due to an elevated rate of missing data at rs62625034, possibly because the probe for 

this single-nucleotide polymorphism overlaps with the Δ32 deletion. Another variant, which 
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has a higher concordance with the deletion in the sequencing data, shows no associations 

with mortality. A phenome-wide scan for effects of variants tagging this deletion shows an 

overall inflation of association P values, but identifies only one trait at P < 5 × 10−8, and no 

mediators for an effect on mortality. These analyses show that the original reports of a 

recessive deleterious effect of CCR5-Δ32 are affected by a technical artifact, and that a 

closer investigation of the same data provides no positive evidence for an effect on lifespan.

CCR5-Δ32 is a deletion in the coding region of the CCR5 gene, and homozygous deletion of 

CCR5-Δ32 (Δ32/Δ32) has been reported to confer resistance against human 

immunodeficiency virus infections in humans1–3. A recent study (now retracted4) suggested 

that Δ32/Δ32 individuals have a 21% increased mortality rate, and that the increased 

mortality rate leads to deviations from Hardy–Weinberg equilibrium (HWE) at this site4,5. 

Here, we reanalyze the data on which these results were based, and find that the variant that 

most closely tags Δ32/Δ32 shows no evidence for an effect on mortality or a deviation from 

HWE. Our findings show that the previously reported effect on mortality was probably 

spurious and that the observed deviation from HWE was caused by a technical artifact.

Our work consists of four parts. First, we investigate which variants are most accurately 

tagging Δ32. Second, we re-examine the evidence for deviation from HWE at these variants. 

Third, we re-examine the evidence for effects on mortality at these variants. Fourth, we 

extend previous association tests to identify phenotypes that could potentially mediate an 

effect of Δ32/Δ32 on mortality.

The original study by Wei and Nielsen (now retracted4) investigated potential deleterious 

effects of Δ32/Δ32 using genetic data and mortality data from the UK Biobank resource. The 

genotyped single-nucleotide polymorphism (SNP) rs62625034 was used as a proxy for Δ32. 

However, in an article posted on his online blog6, S. Harrison showed that the results do not 

replicate at the nearby correlated SNP rs113010081. Building on this, we compare two 

genotyped and two imputed variants with the CCR5-Δ32 deletion as called in the recently 

released UK Biobank exome sequencing data (rs333_sequenced), which we treat as the 

ground truth (Supplementary Tables 1 and 2). The genotyped SNP rs113010081 is a better 

proxy for Δ32 than rs62625034, as indicated by a higher concordance across all genotype 

classes (+/+, Δ32/+ and Δ32/Δ32), as well as higher sensitivity and specificity to distinguish 

Δ32/Δ32 from +/+ and Δ32/+ (Fig. 1, Extended Data Figs. 1 and 2 and Supplementary 

Tables 3 and 4). In addition, the three genotype classes show better separation in the probe 

intensity scatter plots (Fig. 1). rs113010081 was not used as a proxy for Δ32 in the original 

study due to its high missingness (10.3%). However, the overall high missingness rate is 

caused by the absence of this variant from the UK BiLEVE Axiom array, which was used to 

genotype the first ~10% of genotyped samples in the UK Biobank. On the UK Biobank 

Axiom array, which was used for the remaining ~90% of samples, this variant has a 

missingness rate of 0.08%, while rs62625034 has a missingness rate of 3.6%. Thus, the 

genotypes of rs113010081 provide a better proxy for Δ32 than those for rs62625034. As the 

imputed variants tested here are less correlated with Δ32 than the two genotyped variants, 

we refer to the genotyped variants unless otherwise specified.
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When testing for deviations from HWE, we confirm that rs62625034 shows a highly 

significant deviation from HWE, caused by a deficiency of individuals with two copies of 

the rare (deletion-tagging) allele (Supplementary Table 5). However, neither rs113010081 

nor rs333_sequenced shows a significant deviation from HWE under a chi-squared HWE 

test. rs62625034 does show a significant HWE deviation, even in the subset of samples with 

sequencing data, which shows that a difference in power does not cause this discrepancy.

The missingness rate of rs62625034 differs by Δ32 genotype class, as called in the 

sequencing data (17.3, 4.6 and 2.9% for Δ32/Δ32, Δ32/+ and +/+, respectively; Fig. 1). The 

HWE deviation at this SNP is fully explained by this bias in missingness (Supplementary 

Table 6). Individuals with missing data at rs113010081 are not similarly biased with respect 

to rs333_sequenced (Fig. 1). The nonrandom missingness of rs62625034 with respect to Δ32 

may be caused by the fact that the probe for this SNP overlaps with the deletion region but 

matches it only imperfectly (Fig. 1).

We carried out a simulation study showing that for two variants in high linkage 

disequilibrium, strong deviations from HWE at one variant, but not the other, cannot be 

induced by ascertaining samples on one variant alone (Extended Data Fig. 3). However, 

correlated ascertainment on both variants (which can occur through technical artifacts) can 

create this pattern.

When analyzing survival rates, we recapitulate the findings of Wei and Nielsen4,5, and find 

that for rs62625034, carriers of two copies of the rare allele tend to have a lower survival 

rate (Fig. 1, Extended Data Fig. 1 and Supplementary Table 7). However, none of the other 

tested variants shows any association with survival rate. The fact that the highly correlated 

rs113010081 SNP shows no association with survival, and the small number of deaths per 

year on which the signal is based (Fig. 1), make this finding uncompelling. The power to 

detect a 20% increased mortality rate at this SNP at a 0.05 significance level is only 75% 

(Extended Data Fig. 4 and Supplementary Information), which means that we cannot rule 

out that the deletion does affect survival based on the available data. We note that samples 

with missing genotypes at rs113010081 have greatly increased mortality rates (P = 2.7 × 

10−32) due to a batch effect that is described in the Supplementary Information.

To identify phenotypes that could potentially mediate an effect of Δ32/Δ32 on mortality, we 

tested 3,911 phenotypes for associations with Δ32/Δ32, tagged by rs113010081. We identify 

‘lymphocyte count’ as the only trait that is significant at a P value smaller than the classic 

threshold for declaring genome-wide statistical significance: 5 × 10−8 (Supplementary Table 

8 and Extended Data Figs. 5 and 6). At less stringent P value thresholds, we find associated 

phenotypes that are similar to the previously reported associations from additive tests 

(Supplementary Tables 8 and 9). These are consistent with the role of C–C chemokine 

receptor type 5 in the immune system, and suggest that Δ32/Δ32 has effects besides 

conferring resistance to human immunodeficiency virus. However, we do not observe, on 

any diseases, effects that are large enough to explain a substantially increased mortality rate 

(Supplementary Information).

Maier et al. Page 3

Nat Med. Author manuscript; available in PMC 2020 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In summary, our analyses show no evidence that Δ32/Δ32 individuals have increased 

mortality rates. Similar findings have also been reported in other recent manuscripts7–9. This 

provides a case example of the subtle pitfalls that can produce false positive results, even in 

an extraordinarily high-quality and relatively uniformly generated dataset such as the UK 

Biobank.

Extended Data
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Extended Data Fig. 1 |. Survival analysis.
Survival rates for individuals with 0, 1, or 2 copies of the rare allele or No Call (NC) for 

variants tagging the CCR5-Δ32 deletion. First row: Cumulative survival rates. Numbers are 

one-sided p-values of a Cox proportional hazard model which compares survival rates of 

individuals with 0 or 1 alleles to those with 2 alleles. Second row: non-cumulative survival 

rates. Third row: Number of individuals who have died in any given year with 2 copies of 

rare allele (see also Supplementary Tables 7).
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Extended Data Fig. 2 |. Concordance analysis.
Confusion matrix for different markers with missing data. The last column of the first panel 

shows that individuals with missing genotype at rs62625034 are enriched for Δ32/Δ32 

according to rs333_sequenced. This can lead to a violation of HWE at rs62625034. All 

white British samples of UK Biobank WES data shared with UK Biobank Axiom array data 

are used in this figure.
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Extended Data Fig. 3 |. HWe p-values of linked variants.
Simulated HWE Chi-squared p-values at two variants with minor allele frequency of 11% 

with r2 of 0.95, in a sample of 400,000 individuals. Both variants are initially in HWE. We 

then remove a subset of samples which are homozygous for the rare allele at SNP 1. This 

leads to a deviation from HWE at SNP 1, but it also leads to a similar deviation from HWE 

at SNP 2. Only simultaneous selection acting in the opposing direction on SNP 2, or 

technical artifacts which create a dependence of missingness in one SNP on genotype in the 

other SNP explain a situation where HWE p-values are very different at both SNPs. Error 

bars denote the 5th and 95th percentile out of 100 replicates in each bin.
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Extended Data Fig. 4 |. Power analysis.
Power to detect effects on mortality of a genotype with the frequency of Δ32/Δ32 in a 

sample of the same total size and mortality rate as the cohort studied here, as a function of 

relative risk. The power to detect a 20% increase in mortality rate at a 0.05 significance level 

is 75%.
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Extended Data Fig. 5 |. Odds ratios against sample prevalence.
Odds ratios (eβ) for all case-control phenotypes in five variants as a function of sample 

prevalence. Colors represent uncorrected p-values. Open circles represent case-control 

phenotypes with 10 or fewer cases in Δ32/Δ32 individuals. Only phenotypes with more than 

five cases in Δ32/Δ32 individuals are shown.
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Extended Data Fig. 6 |. QQ-plot of the associations.
QQ-plot of the associations across all phenotypes. Each variant is plotted in a different color. 

Only phenotypes with more than five cases in Δ32/Δ32 individuals are shown.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Survival rates for individuals with zero, one and two copies of the rare allele for two 
variants tagging the CCR5-Δ32 deletion.
a,b, Cumulative survival rates show that the evidence for increased mortality of individuals 

homozygous for the variant allele in rs62625034 (a) does not replicate in rs113010081 (b). 

One-sided P values are from a Cox proportional hazard model comparing survival rates of 

individuals with zero or one allele(s) with those with two alleles. c,d, Non-cumulative 

survival rates for rs62625034 (c) and rs113010081 (d), which show the large year-to-year 

variability in the data caused by small sample counts. Numbers indicate how many Δ32/Δ32 

individuals died in each year or age. e,f, Distribution of genotypes at rs62625034 (e) and 

rs113010081 (f) (including missing genotypes) conditioned on rs333_sequenced genotypes. 

The total count for each row is shown to the right. Missing data are strongly correlated with 

genotype class for rs62625034, which fully explains the deviation from HWE at this site. No 

such bias is present at rs113010081. Numbers are based only on samples genotyped on the 

UK Biobank Axiom array, as rs113010081 data are only available for this array. g,h, Allele 

intensity clusters for UK Biobank genotyping data, showing the poorer separation of 

genotype classes for rs62625034 (g) compared with rs113010081 (h). i, Different haplotypes 

at the CCR5-Δ32 locus. Black nucleotides differ from the reference. The site of the very rare 

SNP rs62625034 (G > T) is located within the Δ32 deletion. Due to the sequence similarity 

at the 3′ end, the probe tags the deletion instead. However, the rs62625034 probes match the 

reference genotype better than the deletion, leading to higher missingness in the presence of 

the deletion. NC, no call.
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