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Abstract

Ancestral recombination graphs (ARGs) summarize the complex 
genealogical relationships between individuals represented in a 
sample of DNA sequences. Their use is currently revolutionizing the 
field of population genetics and is leading to the development of 
powerful new methods to elucidate individual and population genetic 
processes, including population size history, migration, admixture, 
recombination, mutation and selection. In this Review, we introduce 
the readers to the structure of ARGs and discuss how they relate 
to processes such as recombination and genetic drift. We explore 
differences and similarities between methods of estimating ARGs and 
provide concrete illustrative examples of how ARGs can be used to 
elucidate population-level processes.
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regions. Consequently, the field moved slowly away from full likelihood 
and Bayesian methods that analysed coalescence trees. Instead, the 
focus shifted to composite likelihood methods based on treating SNPs 
as if they were independent19–21, analysing the distribution of allele 
frequencies22–24, using approximate Bayesian computation25, focusing 
on pairs of sequences26 or other methods that used only a small subset 
of the information in the data. This was the state of the field until 2014, 
when it was demonstrated that inferences of coalescence trees in mod-
els with recombination are in fact computationally feasible, even for 
genome-scale data27. Using clever sampling methods, it was possible 
to estimate (and sample from a posterior) the coalescence trees along 
the length of the genome in a joint structure called an ancestral recom-
bination graph (ARG). This development opened up the possibility of 
extracting much more information from population genetic sequenc-
ing data and, perhaps, developing full likelihood and Bayesian methods 
for inference in population genetics using ARGs (Fig. 1A) in place of 
individual coalescence trees (Fig. 1B). Here, we review developments 
in the field of ARG inference and analysis, with a special focus on the 
prospect of using ARGs as a general framework for rigorous statistical 
inferences in population genetics.

Ancestral recombination graphs
ARGs and the coalescent with recombination
The coalescence process with recombination (CwR), first described 
in 1983 (ref. 2), is formulated as a stochastic process running from the 
present backwards in time, allowing recombination events and coales-
cence events to occur until a MRCA has been found for each locus. In 
later work28, this process was developed further, and the term ARG was 
coined to describe the random graph structure arising as a product of 
the originally described CwR2. The basic concept of ARGs is that they 
represent a coalescence process in which ancestral lineages not only 
merge by coalescence but also split owing to recombination (Fig. 1A). 
From the ARG, the individual coalescence trees for each segment of the 
genome can be deduced (Fig. 1B). Recombination will often generate 
trees with different topologies, although sometimes they may just differ 
in having different branch lengths (Fig. 1). The ARG contains the infor-
mation regarding all the coalescence trees in the genome, but it also 
contains information about recombination events and their location 
on the lineages of the coalescence trees. Clearly, for genomic data with 
many individuals and tens or hundreds of thousands of recombination 
events, the ARG can become very complex. As a result, it is common to 
make some simplifications. In particular, the time of a recombination 
event on a lineage cannot be inferred from data and is, therefore, often 
not represented in the ARG. Further simplifications and approximations 
are often used to enable inferences based on ARGs.

ARGs as sequences of trees
The stochastic process generating ARGs2,28 tracks recombination 
and coalescence events running from the present backwards in time. 
Another way of looking at the process generating ARGs is to consider 
how coalescence trees change along the length of the genome. As the 
trees can be deduced from the ARG, we might consider a process that 
runs from one end of the chromosome to the other end, generating 
coalescence trees that consider the specific recombination and coales-
cence events that affect each genomic segment. This process was shown 
to be non-Markovian29, meaning that the probability distribution of a 
coalescence tree in one position depends not only on the coalescence 
tree in the previous position but also on all other trees along the length 
of the chromosome. Hence, considering the sequential process of trees 

Introduction
Coalescent theory has formed the foundation for analyses of popu-
lation genetic data since the invention of PCR and DNA sequencing 
technologies1–5. The central object of coalescent theory is the coales-
cence tree (Fig. 1), which summarizes information about the genetic 
relationships between sampled individuals. The leaves (tips) of the tree 
represent individual DNA sequences in the sample; the edges (alterna-
tively referred to as lineages or branches) represent lines of descent; 
and the internal nodes represent coalescence events (also known as 
coalescent events), that is, the points in time at which the lineages 
of specific individuals, or groups of individuals, in the sample merge 
(or ‘coalesce’) into their most recent common ancestor (MRCA). The 
root of the tree represents the MRCA of all individuals represented in 
the sample.

Kingman1 and Hudson2,6 discovered in the early 1980s that the 
relationship between individuals in a population sample could be 
described by a binary tree, that is, a tree in which each node has either 
zero children (leaf nodes) or two children (internal nodes), and that 
population genetic models of genetic drift provide simple predictions 
regarding the structure of the tree. This observation quickly led to the 
emergence of many statistical methods for inferring population-level 
parameters such as population size changes7 and migration rates8–10, 
and it spurred the development of new methods to detect natural selec-
tion using population genetic data6,11,12. The central insight forming 
the basis of these methods is that all the information in DNA sequenc-
ing data regarding population-level processes is represented by the 
coalescence tree. If the coalescence tree can be inferred with 100% 
accuracy, no more information is obtainable about these demographic 
processes from the sequence data. This principle led to the develop-
ment of full likelihood and Bayesian statistical methods that achieved 
their objectives by integrating over the set of possible coalescence 
trees using Markov chain Monte Carlo (MCMC) or other stochastic 
methods; that is, they took uncertainty regarding the structure of the 
coalescence trees into account by considering many trees weighted 
by their relative probabilities9,10,13,14.

By the time the human genome had been sequenced in 2003, a 
mature set of tree-based statistical methods for analysis of population 
genetic data had emerged9,10,13,14.There was only one problem: these 
methods assumed no recombination and were therefore useful only for 
mitochondrial DNA, chloroplast DNA, the Y chromosome, some viral 
sequencing data and a few other types of marker that are not subject 
to recombination. However, with the emergence of next-generation 
sequencing technologies, these methods were rapidly becoming out-
dated, as the focus now changed to genomic data with an abundance 
of recombination. For genomic data, there is not just one coalescence 
tree, but as many coalescence trees as there are recombination events 
in the history of the data. Each recombination event splits a segment 
of DNA into two separate segments, each of which will have a different 
coalescence process (also known as coalescent process), thus forming 
distinct trees on each side of the recombination break point. Some 
approaches15,16 attempted to deal with this problem by assuming that 
the genome could be divided into short genomic regions with free 
recombination between regions but no recombination within regions. 
However, mutation rates and recombination rates in humans are fairly 
similar17,18, which means that, on average, every time a new mutation 
occurs that might provide information about the tree structure, a new 
recombination event will also occur that changes the tree structure. 
Furthermore, many of the methods aimed at short non-recombining 
regions simply did not scale computationally to thousands of genomic 
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as they change along the length of the chromosome is computationally 
fairly complex because it is necessary to simultaneously keep track of 
all trees for purposes such as inference and simulation.

For a simpler and more computationally tractable process, a model 
was proposed that could approximate the tree-generating process 
along the length of the genome as a Markovian process, termed sequen-
tially Markovian coalescent (SMC)30. The idea was to allow only coa-
lescence events between lineages whose ancestral genetic material 
overlapped. For example, in Fig. 1A, a coalescence event occurs between 
two lineages that contain only ancestral genetic material for the green 
and the red genomic segments, respectively, forming node 4. Under 
the SMC process, such coalescence events are not allowed, as the coa-
lescence tree at a particular position is allowed to depend only on the 
tree at the previous position, leading to a much-simplified process.

Whereas the SMC process allows only coalescence events between 
lineages that contain at least some shared ancestral genetic mate-
rial, a refinement of the SMC process, called SMC′, also allows coa-
lescence events between lineages with no shared genetic material, 
but with genetic material from adjacent loci31. This small extension 
of the SMC does not lead to much added computational complexity, 
but it drastically improves the accuracy of the approximation. Sub-
sequent work32 has shown that, by most measures, the SMC′ process 
is a very close approximation to the full CwR28 and is today, arguably, 
the preferred approximation to the CwR used for population genetic 
inferences. The possible coalescence events allowed under the CwR, 
SMC or SMC′ model are detailed in Fig. 2.

Various assumptions about the process generating ARGs lead to 
different definitions of ARGs33. Some ARGs allowed in the full CwR are 
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Fig. 1 | The ancestral recombination graph and derived coalescence 
trees. A, An example ancestral recombination graph (ARG) for three sample 
DNA sequences that traces the coalescence process back in time until a most 
recent common ancestor (MRCA) is found. Coalescence trees consist of a set 
of nodes connected by edges. The nodes that represent the observed DNA 
sequences are the leaves (leaf nodes) in the tree, and the nodes that represent 
coalescence events are internal nodes. The node at the top of the tree represents 
the MRCA of the three sequences. Only the internal nodes, and not the leaf nodes, 
are numbered and represented by circles in this depiction. Also, the trees are 
depicted with the root at the top and the leaves at the bottom, as is the tradition 
in computer science. In the ARG, circles represent coalescence events and 
squares represent recombination events. Each recombination event that occurs 
on a lineage breaks up the DNA sequence represented by that lineage into two 
segments, so the two recombination events in the history of these samples  

(1 and 2) separate the sample sequences into three segments (labelled with green, 
blue and red), each of which has a distinct coalescence tree. The coalescence 
events (3, 4, 5 and 6) merge lineages together into a common ancestor. Note that 
a lineage represents a line of descent that contains genetic material for some 
segment (or segments) of the genome that is ancestral to one or more individuals 
in the sample. The DNA segments containing ancestral genetic material  
for the three DNA sequences are depicted adjacent to each edge. For example, 
the lineage going from node 2 to node 4 contains only ancestral material  
for the first green segment of the DNA sequence. The rest of the DNA sequence 
on this lineage is not ancestral to any of the three individuals in the sample. 
B, Coalescence trees for three segments of DNA sequence (green, blue and red), 
respectively. All three coalescence trees are embedded in, that is, can be deduced 
from, the ARG (part A). Although the topologies are identical, the trees differ by 
having different branch lengths.
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not supported by the SMC′ process, and further ARGs that are sup-
ported by the SMC′ process are not allowed by the SMC process. Some-
times, ARGs can be represented even more simply, as just a sequence 
of trees without explicit information about recombination and/or 
identification of which coalescence events are shared between trees34,35. 
Whether these sequences of trees are truly ARGs is then a matter of 
definition. However, irrespective of how ARGs are defined, they can be 
considered as products of a coalescence process governed by popu-
lation genetic factors such as population sizes, migration rates and 
selection, and molecular forces such as mutation and recombination. 
The ARGs contain information about these processes, and methods 
based on ARGs that can extract this information have the potential to 
take on a central role in population genetics in the genomic era, similar 
to that of coalescence trees in the 1990s.

Inference of ARGs
Representations of ARGs and paradigms of ARG inference
Many different methods to infer ARGs have been developed, includ-
ing Margarita34, ARGweaver27, RentPlus36, Arbores37, Relate35, tsinfer +  
tsdate38,39, ARGweaver-D40, SARGE41, KwARG42, ARGinfer43, ARG-Needle44, 
SINGER45, among others. We note that tsinfer and tsdate were tools 
developed separately to infer ARG topology and internal node age, 
respectively; we use ‘tsinfer + tsdate’ to refer to the combined use 
of these methods. These methods differ in many ways, including the 
way they represent ARGs, which is connected to implicit assumptions 
regarding the underlying generative process. Methods representing 
ARGs as a series of coalescence trees, without necessarily enforcing 
that the trees share nodes or branches with each other, include Relate35 
and RentPlus36. This representation is at times convenient but is not 
efficient in that many trees embedded in ARGs share the same nodes 
and edges (Fig. 1), which becomes particularly storage-inefficient 
with large sample size46. Furthermore, this representation destroys 
some of the naturally occurring correlation structure between trees. 
The concept of a correlated sequence of trees underlies simulation 
algorithms such as FastCoal31, fastsimcoal/fastsimcoal2 (refs. 24,47) 
and ms46 as well as inference programs such as tsinfer38, ARG-Needle44, 
SINGER45 and ARGweaver27. It can also lead to a compact ‘succinct tree 
sequence’ data structure for the sequence data, as implemented in 
the widely used simulation software msprime48–50, in which each node 
and edge only needs to be represented once, even though it may be 
a component of many trees. This ‘tree sequence’ representation of 
an ARG as a set of trees with shared nodes and edges33,48–50 results in 

dramatically increased simulation speed and storage efficiency, and 
many current ARG inference methods provide the option to produce 
output in this compact format (for example, tsinfer, ARG-Needle 
and SINGER). msprime48–50, which introduced this data format, is the 
most commonly used software for simulating ARGs and was the first 
software to fully take advantage of this data structure for fast ARG 
simulations.

The inference of ARGs is a computationally difficult problem 
because the number of possible graph topologies can be enormous. 
Additionally, the observed sequence data provide limited information 
about the structure of the local tree in any particular position of the 
genome. Some methods, such as ARGweaver/ARGweaver-D, ARGinfer 
and SINGER, address this problem by taking a Bayesian approach, 
where ARGs are sampled from a posterior distribution by MCMC. 
Instead of inferring a single ARG, many possible ARGs are sampled, 
which provides a representation of the uncertainty in ARG inference 
and facilitates rigorous downstream statistical analyses. Although 
Relate and tsinfer + tsdate infer a single fixed ARG topology, Relate 
additionally samples coalescence times for the inferred topology and 
tsdate outputs metadata about the marginal distribution of the age of 
each node. Most other methods currently provide only point estimates 
of both ARG topology and branch lengths. As the sampling of ARGs 
is computationally demanding, methods that estimate only a single 
ARG tend to be much faster than methods that sample multiple ARGs.

Scalability, accuracy, data requirements and output
ARG inference methods are in rapid development and are constantly 
improving. We provide an overview here and refer to recent compre-
hensive comparisons of various methods51–53, which measure various 
aspects of evolutionary inference, such as recombination, coalescence 
times, allele frequencies and polygenic score histories.

Current ARG inference methods differ, for example, with respect 
to model assumptions, computational speed, inference accuracy, 
what type of inferences are made, and which data types are supported. 
Whereas some methods require phased modern data, other meth-
ods can use other types of data, including ancient DNA and geno-
type array data. ARGweaver and ARGweaver-D are the only methods 
that can use unphased data; tsinfer-sparse (a variation of tsinfer) 
and ARG-Needle are the only methods that support genotype array 
data. ARGweaver-D, Relate, tsinfer + tsdate and SARGE can support 
the use of ancient DNA, which must be computationally imputed 
and phased for all programs except ARGweaver-D. Relate and tsinfer 

CwR CwR and SMC′ CwR, SMC′ and SMCa b c

Fig. 2 | Examples of coalescence events permitted by different models of the 
CwR. a, A coalescence event between two lineages carrying non-overlapping 
and non-adjacent segments of DNA. Such coalescence events are allowed 
only under the full coalescent with recombination (CwR) and not by SMC′ or 
SMC. b, A coalescence event between two lineages carrying adjacent but non-
overlapping segments of DNA. Such coalescence events are allowed under both 

the CwR and SMC′ processes but not under SMC. c, A coalescence event between 
overlapping segments of DNA. Such coalescence events are allowed under all 
three models. The limits that each of the SMC′ and SMC models place on the 
types of allowed coalescence restrict the state space of ancestral recombination 
graphs that can be simulated under these models, with SMC inducing a more 
severe restriction than SMC′. SMC, sequentially Markovian coalescent.
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additionally require the polarization of ancestral states, which typically 
is inferred using outgroup species. The applicability of the different 
methods is  summarized in Table 1.

In terms of computational speed, methods such as ARGweaver, 
Arbores, KwARG and ARGinfer can only handle tens of sequences, with 
KwARG and ARGinfer also being limited to relatively short sequences. 
Methods such as RentPlus, SARGE and SINGER can handle hundreds 
of whole-genome sequences, and Relate can handle thousands of 
sequences including the full 1000 Genomes Project data54. The most 
scalable methods now are tsinfer and ARG-Needle, which can handle 
several hundred thousand sequences including the full UK Biobank 
data55 and other large genome-wide association study (GWAS) data.

Simulation studies have found that the fastest methods often, but 
not always, have the worst performance51–53, which is not surprising as 
with the ARG inference problem, as in many other computational prob-
lems, there is a trade-off between computational speed and accuracy. 
However, methods with comparable speed sometimes have very differ-
ent statistical properties, often with more recent methods outperform-
ing older methods. We refer the reader to recent simulation  comparisons 
for more specifics on the accuracy of the various methods51–53.

As previously discussed, the methods also differ in whether they 
provide measurements of statistical uncertainty in the estimates, 
with ARGinfer, ARGweaver, ARGweaver-D and SINGER being the 
only methods providing full probabilistic modelling of statistical 
uncertainty. Finally, the methods differ in the representation of the 
ARG provided, with some methods, such as Relate, estimating trees 
in windows, whereas other methods, such as SINGER, ARGweaver 
and ARGweaver-D, provide graphs that represent a sequence of trees 
 separated by  individual recombination events.

Application of ARGs for population  
genetic inferences
Inference of demography and selection
ARGs can be used to make detailed and powerful inferences regarding 
population genetic processes, such as population size history, migra-
tion, natural selection, mutation rate and recombination rate. A major 
area where ARGs have been of use is in the inference of demography 

and the genealogical relationship between individuals. The rate of  
coalescence at a certain time point is inversely proportional to the 
effective population size (Ne) at that time. Therefore, one can use 
the temporal density of coalescence times of an ARG to estimate Ne 
through time (Fig. 3a).

ARGs have also been used to estimate the parameters of com-
plex demographic models by extracting coalescence trees across the 
genome and considering the different possible migration histories of 
the lineages in each tree56. This idea of considering the possible paths 
taken by lineages through a demographic model has also been lever-
aged for local ancestry inference, in which each tree along the genome 
provides information about the path that tree took through the demo-
graphic model and, therefore, about the local ancestry at the segment 
spanned by this tree57,58. ARGs can also be used to infer natural selection. 
Inference methods to estimate the selection coefficient for a single 
SNP using ARGs have proceeded by extracting the local tree around 
the focal SNP and then examining the relative coalescent rate of line-
ages carrying the derived allele and those carrying the ancestral allele. 
For example, an allele under positive selection (s > 0) is expected to 
increase in frequency forwards in time more rapidly than a neutral allele 
(s = 0) (Fig. 3b). Therefore, looking backwards in time, the positively 
selected allele will seem to rapidly decrease in frequency, meaning the 
number of lineages carrying this allele will decline quickly. We would 
then expect a high density of coalescence events of lineages with the 
selected allele, analogous to the previous discussion of small popula-
tion sizes generating high densities of coalescence events59,60. The 
usage of the coalescence density of lineages carrying different alleles 
to infer selection can either be done analytically by explicitly comput-
ing the likelihood and integrating over the derived allele frequency61,62 
or by applying machine learning techniques on the inferred ARGs 
themselves63,64. These methods can also be slightly modified to exam-
ine selection acting on multiple SNPs concurrently, that is, polygenic 
selection65, or to reconstruct polygenic scores through time52,66.

In addition to inferring demography and selection, there have 
been other exciting applications of ARGs for inferences, for example, 
the combination of inferred ARGs with a linear mixed model frame-
work to refine association analyses of variants with complex traits44. 

Table 1 | The applicability of different ARG inference methods

Samples branch 
lengths

Samples topologies Scales to 1000 Genomes 
Project

Scales to UK 
Biobank

Supports ancient 
DNA

Supports 
genotyping array

ARGweaver Yes Yes No No Yes No

RentPlus No No No No No No

Arbores Yes Yes No No No No

Relate Yes No Yes No Yes No

tsinfer+tsdate No No Yes Yes Yes Yes

ARGweaver-D Yes Yes No No Yes No

SARGE No No No No No No

KwARG No No No No No No

ARGinfer Yes Yes No No No No

ARG-Needle No No Yes Yes No Yes

SINGER Yes Yes No No No No

The wording ‘Samples branch lengths’ and ‘Samples topologies’ refers to whether the methods just provide a single point estimate or sample multiple instances to provide measures 
of statistical uncertainty. ARG, ancestral recombination graph.
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A particular strength of their method was the ability to accurately 
detect large-effect associations of rare variants on sparse genotype 
array data. Another promising area of research is the use of ARGs to 
explicitly model the spatial location of ancestral lineages of a given 
sample39,67–69. Furthermore, ARGs have been used to study the evolu-
tion of the human mutation spectrum by examining the mappings of 
mutations to the branches of the ARG to study changes in mutation 
frequency over time70. A similar approach of implicitly considering 
the possible mappings of mutations to branches of coalescence trees 
was taken to estimate the ages of alleles71, which in turn were used to 
infer historical generation times in different human populations72. 
Although controversies exist about the specific methodology used73, 
the framework used nevertheless illustrates the exciting potential 
of ARGs to help understand complex molecular and demographic 
processes. Nascent ARG-based methods have also recently been devel-
oped to infer identity-by-descent segments74, detect chromosomal 
inversions75, compute time-stratified, tree-based f-statistics76, simulate 

and analyse quantitative traits77,78, model linkage disequilibrium79 and 
simulate local ancestries80. In addition, developments in incorporat-
ing ARGs into forwards-in-time simulations, which enable ARGs to be 
generated from a much wider set of molecular and population-level 
processes than is possible with backwards-in-time simulations, has 
greatly extended the set of inference problems to which ARGs can be 
applied49,81.

Using ARGs for full probabilistic inferences
Many ARGs are possible with a given data set, but analyses that use 
ARGs often rely on a single ARG estimated from the data. This treat-
ment of a single inferred graph as the true graph greatly simplifies 
subsequent analyses, but it presents two distinct problems. First, it 
does not account for uncertainty in the underlying ARG, inducing 
false certainty in the results of any analysis that uses a single ARG as 
the true ARG. Second, any ARG is inferred under certain implicit or 
explicit assumptions (for example, no selection, constant population 
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Fig. 3 | Different population genetic parameters are reflected in the ARG.  
a, Changes in historical population size are reflected in the ancestral recombination 
graph (ARG). The left panel shows an ARG in the presence of constant population 
size through time. The right panel shows an ARG in the presence of a historical 
population bottleneck. The smaller effective population size (reduced Ne) 
during this period results in a higher density of coalescences across the whole 
ARG compared with the constant population size history. Squares represent 
recombination events and circles represent coalescence events. b, Natural 
selection at a SNP results in a more rapid increase in the frequency of the selected 

allele, leading to a higher density of coalescences of lineages carrying the selected 
allele (shown in blue) at the tree spanning the SNP. Both panels show a coalescence 
tree for a particular region of the genome (marked in dark grey); of note, not 
the whole ARG is shown. A mutation on a lineage (shown as a blue diamond) 
causes all descendant lineages to inherit that allele. If this allele is neutral (s = 0) 
(left), no difference in coalescence density is expected. However, if this allele is 
advantageous (s > 0) (right), an increase in the coalescence density of blue lineages 
is expected.
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size, no population structure) and will therefore be biased, as the true 
population genetic parameters may differ from the assumed scenario. 
Hence, the unobserved nature of the ARG necessitates both an integra-
tion over uncertainty in the ARG and a bias correction to achieve full 
probabilistic inference.

Future methods can leverage ARGs for full probabilistic infer-
ences in one of two ways. The first way is through a statistical tech-
nique known as importance sampling82–84. In this version of importance 
sampling, a large set of ARGs is sampled under a specific model with 
specific assumptions about parameters, such as effective population 
sizes or selection coefficients (Fig. 4). These ARGs are then assigned 
weights that are inversely proportional to their probabilities under the 
sampling model. By reweighting the samples appropriately, one can 
approximate the likelihood function for a population genetic param-
eter of interest evaluated at any parameter value and thereby provide 
estimates of the parameters61,62. ARGs that are more likely under the 
original set of parameters used to sample from the posterior are given 

low weights, whereas ARGs that are less likely are given high weights. 
Finally, the likelihood of any parameter values can be approximated 
as a weighted average of the ARG probabilities for the sampled ARGs. 
This approximation becomes exact as more and more samples of 
ARGs are used.

The alternative approach to importance sampling is to incorpo-
rate parameter estimation directly into the MCMC algorithms used to 
sample ARGs. For example, in addition to proposing changes in ARG 
topologies and branch lengths, an ARG sampling algorithm could 
also propose changes in historical population size or mutation rate. 
There has been previous work on inferring ARGs under user-defined 
demographic models40, and Relate35 has the capability to alternate 
between the estimation of coalescence times and the estimation of 
historical population sizes, but a method that can jointly sample ARGs 
and parameters is yet to be created. Frameworks using this concept of 
joint sampling have been developed19,85–88, but they have focused on 
small sample sizes or small numbers of total recombination events. This 
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is likely due to the dramatically increased computational cost of doing 
this joint sampling in addition to the necessity of incorporating every 
parameter of interest into the ARG inference algorithm. By contrast, 
importance sampling can be carried out without changing the basic 
inference algorithm and, therefore, might provide more flexibility to 
infer a wider set of parameters. For example, one can imagine using 
ARGs to examine other processes, such as background selection, assor-
tative mating, inference of admixture graphs. We therefore consider 
the use of importance sampling of ARGs for full probabilistic inference 
of population genetic parameters to be an important line of future 
research for the population genetics community. Other important 
future directions in this area include the development of fast, prop-
erly calibrated ARG-inference methods and finding efficient ways to 
compute the probability of an ARG or coalescence tree under a given 
set of population genetic parameters.

Illustration on human data
To illustrate the utility of inferred ARGs in understanding population 
genetic processes we provide three examples. We first applied SINGER 
to human sequencing data around the ABO and MCM6 genes. Both are 
previously reported targets of natural selection89–92, but here we show 
how to explore the selection signals using inferred ARGs.

The ABO gene, which determines an individual’s blood type, is 
one of the most variable coding regions outside of the HLA region89. 
Comparative genomics analysis has shown evidence of trans-species 
polymorphism at this locus, and it has been hypothesized that balanc-
ing selection is maintaining its polymorphism in humans and other 
primates89,93,94. If this hypothesis is true, then we would expect to see 

unusually ancient times to the most recent common ancestor (TMRCA) 
in the ABO gene. Plotting the estimated 1 kb TMRCA around the ABO 
locus in the CEU population (Utah residents with northern and western 
European ancestries) from the 1000 Genomes Project54,95, compared 
with the chromosome 9 median of 1.62 Myr ago (Ma), shows that an 
inferred TMRCA within this region occurred more than 6 Ma (roughly 
the speciation time between humans and chimpanzees)96 (Fig. 5a). 
These results are compatible with the hypothesis of balancing selec-
tion maintaining trans-species polymorphism at this locus. Of note, 
as SINGER uses a standard coalescence prior, it likely underestimates 
the most ancient coalescence times, meaning the true TMRCA at this 
locus may be older than suggested here.

The derived allele at the rs4988235 SNP in the MCM6 gene has been 
identified as a causal variant for lactase persistence in Europeans and is 
believed to have been positively selected after the introduction of dairy 
farming90–92. Comparing the overall 1 kb branch-length-based diversity45 
in all British (GBR) samples from the 1000 Genomes Project54,95 with 
the diversity in the haplotypes carrying the derived allele of rs4988235 
reveals that the within-carrier diversity is substantially lower than the 
overall diversity, and the depletion of diversity between carriers spans 
a very long region (Fig. 5b). This observation is consistent with a strong, 
recent selective sweep, as previously proposed90,91.

We also demonstrate the ability of ARGs to infer the demographic 
history of different human populations (Fig. 6). We analysed an ARG 
inferred by tsinfer + tsdate on a large set of modern and ancient 
genomes38,39. We considered four of the populations on which this 
ARG was inferred: the Han Chinese (CHB), British (GBR) and Yoruba 
(YRI) populations from the 1000 Genomes Project54, and the Quechua 

0.00000
135.4

0

2

4

6

8

10

132.8 133.0 133.2 133.4 133.6 133.8

135.5 135.6 135.7 135.8
Genomic coordinates (Mb)

Genomic coordinates (Mb)

135.9 136.0 136.1 136.2

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

Br
an

ch
-le

ng
th

-b
as

ed
 d

iv
er

si
ty

TM
RC

A 
(M

a)

All samples
Haplotypes with 
rs4988235 derived allele
MCM6 gene

Inferred TMRCA
Chr9 median TMRCA
ABO

b

a Fig. 5 | Using inferred ARGs to learn about the 
balancing selection at ABO and the selective 
sweep at MCM6. a, The purple lines show the 
inferred 1 kb time to most recent common ancestor 
(TMRCA) for 50 sequences from the CEU population 
from the 1000 Genomes Project54,95, and the human–
chimpanzee speciation time (around 6 Myr ago 
(Ma)) is shown as a green solid line. The ABO gene 
(shaded area) exhibits coalescence times older than 
the speciation time. b, The ancestral recombination 
graph (ARG)-inferred 1 kb branch-length-based 
diversity among all samples (red) versus that of 
carriers of the derived allele of rs4988235 (blue) 
in the British (GBR) population from the 1000 
Genomes Project54,95. The inferred ARG is available  
at: https://github.com/YunDeng98/ARG_review/
tree/main/inferred_ts.

http://www.nature.com/nrg
https://github.com/YunDeng98/ARG_review/tree/main/inferred_ts
https://github.com/YunDeng98/ARG_review/tree/main/inferred_ts


Nature Reviews Genetics | Volume 26 | January 2025 | 47–58 55

Review article

population, an Indigenous population of South America, from the 
Simons Genome Diversity Project97. Calculating the genome-wide dis-
tribution of within-population pairwise TMRCAs for each population 
revealed that the Yoruba population shows the highest density of older 
coalescent times, as the ancestral lineages of African individuals were not 
subjected to the Out of Africa bottleneck that affected all non-African 
populations. The Han Chinese and British populations, whose ancestral 
lineages were affected by this bottleneck, exhibit a reduction in the 
number of very old pairwise TMRCAs relative to the Yoruba and a cor-
responding increase in the number of more recent coalescences (Fig. 6a). 
The Quechua population shows an even more extreme skew towards 
recent TMRCAs (Fig. 6a), resulting from Quechua lineages being affected 
by both the Out of Africa bottleneck and the bottleneck that occurred 
when a population of humans migrated across the Bering Land Bridge 
during the Last Glacial Maximum to people the Americas98.

We also ran Relate on chromosome 1 for a sample of four popula-
tions from the 1000 Genomes Project54: Han Chinese, British, Yoruba 
and Finnish (FIN). Using the EstimatePopulationSize functionality, 

which infers historical population sizes in different epochs based on 
the density of inferred coalescence events, we reconstructed the demo-
graphic history of each population. We observe that at very ancient 
times, all populations seem to have identical population sizes, which is 
what would be expected if these populations had not yet diverged but 
were instead all part of the same ancestral population (Fig. 6b). In the 
period 10,000–200,000 years ago, we observe a significant decrease 
in the population sizes of all non-African populations relative to the 
Yoruba population, coinciding with the Out of Africa bottleneck. In 
very recent time periods, we observe a decrease in the Finnish popula-
tion size relative to the British population size, which corresponds to 
the known small founding population of modern-day Finland when 
compared with other European populations99.

Conclusions
Full probabilistic population genetic inferences on genomic data might 
have seemed impossible a few years ago. However, new computational 
methods have facilitated the use of ARGs to address several problems 
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in population genetics such as inferring ages of mutations, identify-
ing fine-scaled relationships between individuals, detecting natural 
selection acting on traits and individual alleles. Although still in their 
infancy, methods using either MCMC or importance sampling on ARGs 
promise to provide probabilistic frameworks that can take advantage 
of the rich amount of information in full genomic data. Even without 
such methods, ARG inference provides a crucial tool for visualizing 
genetic variation and detailed genetic relationships. Not all methods 
for inferring ARGs perform equally well. There is generally a trade-off 
between accuracy and computational complexity. Also, methods that 
provide measures of statistical accuracy (for example, full Bayesian 
methods such as ARGweaver and SINGER) are generally much slower 
than methods that do not provide measures of statistical uncertainty. 
Currently, only methods such as ARG-Needle and tsinfer are applicable 
to GWAS-sized data sets. We expect numerous developments over 
the next few years that will improve the computational and statistical 
aspects of ARG inference and expand the applications of ARGs to fully 
move computational population genetics into the genomic era.

Code availability
The results presented in Figs. 5 and 6 can be reproduced by code in 
the following GitHub repository: https://github.com/YunDeng98/
ARG_review.git.

Published online: 30 September 2024
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